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Figure 1: Stream surfaces generated during this study. On the left, flow around an ellipsoid. In the middle, flow in a tokamak. On the right, flow
from a thermal hydraulics simulation.

ABSTRACT

Parallel stream surface calculation, while highly related to other
particle advection-based techniques such as streamlines, has its own
unique characteristics that merit independent study. Specifically,
stream surfaces require new integral curves to be added continu-
ously during execution to ensure surface quality and accuracy; per-
formance can be improved by specifically accounting for these ad-
ditional particles. We present an algorithm for generating stream
surfaces in a distributed-memory parallel setting. The algorithm
incorporates multiple schemes for parallelizing particle advection
and we study which schemes work best. Further, we explore spec-
ulative calculation and how it can improve overall performance. In
total, this study informs the efficient calculation of stream surfaces
in parallel for large data sets, based on existing integral curve func-
tionality.

Index Terms: D.1.3 [Programming Techniques]: Concurrent
Programming—Parallel programming; Computer Graphics [I.3.3]:
Picture/Image Generation—Display algorithms

1 INTRODUCTION

A stream surface is an infinite set of integral curves originating from
a seeding curve. It is a powerful visualization tool for insight into
characteristics and features of vector fields. In practice, stream sur-
faces are approximated by the triangulation of adjacent pairs of in-
tegral curves to create the surface. Typically, the stream surface is
constructed adaptively. Particles are placed along the seeding curve
and advected, creating integral curves. When two adjacent integral
curves diverge too far, new particles are inserted to adapt the com-
putation and guarantee the accuracy of the approximation. For max-
imum surface accuray, especially for long integration times, these
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new particles must be placed on the initial seeding curve. Unfor-
tunately, this is often not efficient, in a distributed-memory parallel
environment, because the region containing the new particles is of-
ten not readily available to perform further integration.

The performance characteristics of stream surfaces are differ-
ent than streamlines and other particle advection-based techniques.
First, all particles originate along a seeding curve, which heavily
emphasizes certain regions of the volume, namely the regions that
contain the seeding curve and those in close proximity. Further,
the addition of “refinement” particles inserted back on the seeding
curve results in a fundamentally different access pattern. In this
study, we ask the question: what is the most efficient way to carry
out a stream surface calculation on large data, given that its access
patterns are different than other particle advection algorithms?

An important start to our work is parallelizing the stream surface
calculation. Parallelization is necessary for stream surfaces that re-
quire more memory than is available on a desktop machine and also
to reduce the time spent calculating the surface. This parallelization
process goes beyond advecting particles in parallel. We must detect
when adjacent integral curves have diverged too far, diminishing
the quality of the surface approximation, even when those integral
curves reside on different processing elements. Further, we must
be able to create the final surface in a way that guarantees that no
processing element exceeds its available memory.

The algorithm we developed supports different approaches for
parallelizing particle advection. Since every particle originates on
the seeding curve – which occupies a relatively small part of the
overall volume – efficient parallelization is difficult. We study two
approaches, parallelizing-over-particle and parallelizing-over-data,
and their relative merits in this environment.

Finally, we consider the idea of speculative refinement. The mo-
tivating idea is that advecting particles is less expensive when the
region of the mesh a particle traverses is already loaded from disk
and in primary cache. Clearly, it would be ideal to know a priori
which particles provide a good approximation of the surface. But
this is not possible, since the data-dependent nature of the algorithm
means that separation of adjacent integral curves must be detected
as the particles advect. In short, speculative calculation will ad-
vect more particles, but the cost of advecting each particle will be
reduced. With this study, we endeavored to assess this balance qual-
itatively: under what circumstances does speculative calculation of



particles improve overall performance? When does speculative cal-
culation stop being beneficial?

Parallel particle advection performance is highly dependent on
the initial configuration – where the seeding curve lies for stream
surfaces – and the nature of the velocity field. We designed a
study that covers a variety of configurations and determine when
the parallelization methods and speculative computation perform
best. Specifically, we used three different data sets and varied the
size of the seeding curve, the integration time (which affects surface
length), and the amount of speculative calculation. The combina-
tion of these variables resulted in 120 different experiments.

The contributions of this paper are:

• The description of an algorithm for calculating stream sur-
faces on a distributed-memory parallel system;

• Analysis of two different parallel particle advection algo-
rithms, parallelizing-over-particle and parallelizing-over-data,
with respect to stream surfaces, to understand their perfor-
mance differences;

• The concept of speculative refinement in the context of stream
surfaces, and analysis of its benefits; and

• A thorough set of experiments that cover a variety of stream
surface workloads.

2 BACKGROUND AND PREVIOUS WORK

2.1 Stream Surface Definition and Computation

In the following, we assume that v(x) is a three-dimensional vector
field, defined over a finite domain Ω ⊂ R3. In this paper, v is as-
sumed stationary, i.e. constant in time. An integral curve S(x0) of v
is the solution to the ordinary differential equation

Ṡx0(t) = v(S(t)) (1)

with initial condition
Sx0(0) = x0 (2)

Simply put, S is a curve that contains the point x0 and is tangent to
the vector field at every point over time. The intuitive understanding
associated with integral curves is that of the trajectories of massless
particles that are advected through a domain by v. Furthermore, the
point x0 from which the particle is initially released is called the
seed point or simply seed, and one calls an integral curve forward
if t > 0 and backward if t < 0, respectively. In the typical case
found in visualization where v is given in discrete form (e.g., as an
interpolated variable over a regular or unstructured mesh), S can be
approximated using numerical integration techniques (cf. [11]).

Figure 2: Stream surfaces consist of families of particle trajectories
emanating from the curve C(s). Alternatively, they can be viewed
as the surface traversed by C under advection in the vector field;
instantaneous snapshots of C are called time lines.

If C is a one-dimensional curve, contained in Ω and parameter-
ized by s, a stream surface S is defined by

S (s, t) := SC(s)(t).

In words, S is the union or continuum of integral curves originat-
ing on the seeding curve C. While S (s, ·) coincides with an indi-
vidual integral curve, the surface lines given by S (·, t) are called
time lines. Figure 2 provides a graphical explanation of these terms.

Observe that S has a natural parameterization in the form of
(s, t) coordinates. Every point on the surface, given s and t, can be
computed by propagating the integral curve starting at C(s) through
the application of numerical integration until it reaches t. The goal
of any stream surface algorithm is to construct a geometric approx-
imation of S , to be visualized, using a sparse set of integral curves.

The need to generate stream surfaces efficiently, i.e. using
a minimum number of integral curves, was first recognized by
Hultquist [12] in 1992. He was the first to describe surface inte-
gration in terms of an advancing front. In his approach, the starting
curve is discretized using a finite set of points that seed integral
curves to form a skeleton of the stream surface. The integral curves
are individually advanced by a single integration step at a time, re-
sulting in a sequence of points for each integral curve called an
advancing front. Here, Hultquist advances integral curves accord-
ing to a clever heuristic that keeps the angles between adjacent front
segments small. Adjacent pairs of integral curves form ribbons, and
triangulation is performed per-ribbon by a shortest-diagonal heuris-
tic.

Due to the strong deformations a stream surface exhibits, result-
ing from complex flows, using a fixed (even if high) number of
curves to represent the surface yields inadequate results. Hultquist
employed adaptive refinement by using the distance between adja-
cent integral curves to control the front resolution through insertion
and removal of integral curves. Furthermore, additional criteria ad-
dress the fact that stream surfaces may “tear” (i.e., become discon-
tinuous) at object boundaries or near saddle-like structures. Here,
ribbons where this behavior is identified are not propagated further,
and a single front is split into multiple fronts.

Overall, Hultquist’s method performs well for moderately com-
plex flows, but does not cope well with folding, shearing or twist-
ing of stream surfaces, since the refinement strategy does not take
these issues into account. Hultquist’s algorithm was augmented by
Stalling [23] by incorporating local topological information into
the triangulation process, which addresses the strong deformation
found near critical points, and slightly modifying the refinement cri-
teria to address some of the cases mentioned above. Garth et al. [10]
introduced several modifications to Hultquist’s original scheme to
allow stream surface computation in the presence of very complex
flow structures. By moving from time-based integral curve inte-
gration to arc length-based integration and incorporating front re-
finement criteria based on curvature, better resolution control is
achieved, and complex flow patterns can be adequately resolved.
In a later paper, these authors described an algorithm that translates
these results to time-varying flow [9].

In contrast to methods that compute the surface geometry explic-
itly as a triangle mesh, other methods avoid integral curve compu-
tation. van Wijk [27] gave a global approach that implicitly repre-
sents stream surfaces as implicit surfaces in an advected scalar field.
Scheuermann et al. [21] exploited the existence of an analytic flow
solution for tetrahedral grids with linear interpolation to propagate
a stream surface through tetrahedra basis. While these techniques
are conceptually elegant, the restrictions introduced with respect
to choice of starting curve or surface resolution severely limit the
flexibility of stream surfaces for vector field visualization purposes.
Aside from explicit construction of stream surface geometry, meth-
ods exist that create the visual impression of a stream surface by
using particles, e.g., [26]. While simple to implement and broadly



Figure 3: A vortex breakdown bubble is visualized by a single com-
plex stream surface rendered using illustrative rendering techniques.
Image reproduced from [13] with permission.

applicable, the visual clarity of these schemes is often lacking, as
the depth-enhancing quality of shaded surfaces is lost.

Advanced visualization of integral surfaces was introduced by
Löffelmann [15] in proposing texture mapping of arrows on stream
surfaces (stream arrows) to convey the local direction of the flow,
and Stalling [23] employed a LIC method towards the same goal.
Garth et al. [9], Hummel et al. [13], and Born et al. [2] re-
cently investigated advanced rendering techniques including non-
photorealistic rendering and better texture mapping to achieve im-
proved visual depictions of stream surfaces (cf. Figure 3). These
examples document the potential of stream surfaces over simpler
methods, such as streamlines, to fully elucidate the complex na-
ture of flow in three-dimensional vector fields. Furthermore, stream
surfaces have also been used as building blocks for more complex
visualization techniques, e.g., in an algorithm for the extraction of
vortices from CFD data [10].

2.2 Parallel Considerations
Existing stream surface algorithms are not easily parallelized. For
example, Hultquist’s method and its generalizations [12, 23, 10]
crucially rely on single-stepping individual integral curves and ap-
plying heuristics after each such step to guarantee viable results;
thus, parallel computation is difficult to employ for such algorithms.
Furthermore, the entire vector field must be stored in memory to
achieve reasonable performance.

Although we are aware of no previous work for parallel stream
surface computation over large data sets, there has been consider-
able previous work in the area of parallel integral curves and other
integral curve techniques. Generally, both the data set, represented
as a number of disjoint blocks, and the computation in the form of
integration work, can be distributed. An early treatment of the topic
was given by Sujudi and Haimes [24], who made use of distributed
computation by assigning each processor one data set block. An in-
tegral curve is communicated among processors as it traverses dif-
ferent blocks. Other examples of applying parallel computation to
integral curve-based visualization include the use of multiprocessor
workstations to parallelize integral curve computation (e.g., [14]),
and research efforts focusing on accelerating specific visualization
techniques [4]. Similarly, PC cluster systems were leveraged to ac-
celerate advanced integration-based visualization algorithms, such
as time-varying Line Integral Convolution (LIC) volumes [16] or
particle visualization for very large data [7].

Focusing on data size, out-of-core techniques are commonly
used in large-scale data applications where data sets are larger than
main memory. These algorithms focus on achieving optimal I/O
performance to access data stored on disk. For vector field visual-
ization, Ueng et al. [25] presented a technique to compute integral
curves in large unstructured grids using an octree partitioning of
the vector field data for fast fetching during integral curve construc-

tion using a small memory footprint. Taking a different approach,
Bruckschen et al. [3] described a technique for real-time particle
traces of large time-varying data sets by isolating all integral curve
computation in a pre-processing stage. The output is stored on disk
and can then be efficiently loaded during the visualization phase.

Different partitioning methods were introduced with the aim of
optimizing parallel integral curve computation. Yu et al. [28] in-
troduced a parallel integral curve visualization that computes a set
of representative, short integral segments termed pathlets in time-
varying vector fields. A preprocessing step computes a binary clus-
tering tree that is used for seed point selection and block decom-
position. This seed point selection method mostly eliminates the
need for communication between processors, and the authors are
able to show good scaling behavior for large data. However, this
scaling behavior comes at the cost of increased preprocessing time
and, more importantly, loses the ability to choose arbitrary, user-
defined seed-points, which is often necessary when using integral
curves for data analysis as opposed to obtaining a qualitative data
overview. Chen and Fujishiro [5] applied a spectral decomposi-
tion using a vector-field derived anisotropic differential operator to
achieve a similar goal with similar drawbacks. Peterka et al. [18]
did a study of parallel particle tracing for steady-state and time-
varying flow fields in which they configured the 4D domain de-
composition into spatial and temporal blocks that combine in-core
and out-of-core execution in a flexible way that favors faster run
time or smaller memory usage. They also compared static and dy-
namic partitioning approaches. They learned several lessons for
steady flow, including that computational load balance is critical at
smaller system scale. Beyond that, communication is the primary
bottleneck. They also found that round robin domain decompo-
sition remains the best layout for load balancing. Finally, Nouane-
sengsy et al. [17] employed an algorithm that preprocessed the data,
analyzed the probability that particles would move from one block
to another, and made decisions about where to load blocks (some-
times redundantly) based on this analysis. While impressive results
were achieved for streamlines, their algorithm likely would need to
be specifically adapted for stream surfaces, since the probabilities
of particles moving from block to block are no longer independent
as all particles originate on a seeding curve.

Most relevant to this paper, Pugmire et al. presented a system-
atic study of the performance and scalability of three parallelization
algorithms [20]: the first two correspond to parallelization-over-
particle and -over-data blocks, respectively, while the third algo-
rithm (termed Master-Slave) adapts its behavior between these two
extremes based on the observed behavior during the algorithm run.
The parallelization-over-particle and over-data blocks techniques
are discussed further in section 4. The intent of this work is to im-
plement stream surface computation in terms of the above integral
curve framework and investigate the performance and feasibility of
different parallelization schemes in this context.

3 ADAPTIVE INTEGRATION-BASED ALGORITHMS

In the following section, we describe a general technique for the
approximation of integral surfaces. The surface approximation is
achieved by the successive approximation of integral curves. We
first describe an integral curve refinement algorithm to create the
surface skeleton and then use that skeleton to create the surface
approximation.

3.1 Surface Refinement
The most important problem in the stream surface algorithm is the
refinement strategy. The refinement strategy must handle the pres-
ence of discontinuities in the surface. To do this we specify the
following constants: the refinement distance Drefine, the minimum
distance between adjacent integral curves to achieve surface qual-
ity, and the discontinuity distance Ddiscont, the distance at which we
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Figure 4: If the distance between streamlines ever exceeds the
Drefine distance we must refine the surface between SC(i) and SC(i+1).
The Ddiscont distance is the minimum distance between streamlines
inserted on the seed curve.

stop the refinement because of discontinuities. We next describe
an algorithm for adaptive refinement of the surface approximation
done by incremental insertion of new integral curves S into the se-
quence of curves SC(i), i = 0, . . . ,N originating at the seeding curve
C. We assume the curve C is a piecewise linear curve. Surface re-
finement is needed if the distance between SC(i) and SC(i+1) integral
curves ever exceeds the distance Drefine along the length of the both
curves, see Figure 4 for an example distance. To refine the surface,
we insert a new seed point on the seeding curve between SC(i) and
SC(i+1) seed points to increase the surface definition. There could
be discontinuities in the stream surface that will cause the refine-
ment to never stop trying to insert more integral curves to fill this
distance. To handle the presence of discontinuities, the refinement
is stopped if the distance between SC(i) and SC(i+1) seed points is
less than Ddiscont, see Figure 4 for an example distance. This al-
gorithm refines the integral curve sequence until a certain level of
quality is achieved by the distance measurements.

We formulate the following iterative refinement algorithm:

1. Let SC(i)(), i= 0, . . . ,N be a set of integral curves created from
an initially provided set of seed points and create an empty set
Sinsert to contain inserted integral curve seeds points from the
refinement process.

2. For each adjacent integral curve set (SC(i),SC(i+1)) compute
the distance between them; if that distance is ever greater than
Drefine, create an integral curve seed point Srefine at the mid-
point between the seed points SC(i) and SC(i+1).

3. If the distance between the seed points SC(i) and SC(i+1) is
greater than Ddiscont, add Srefine into Sinsert.

4. If Sinsert, is empty then calculate stream surface.
5. Otherwise, compute the integral curves in the Sinsert set and

then merge the integral curves into the SC(i) set. The merge is
needed to continue the refinement check, so continue at step
2.

3.2 Stream Surface Generation

The above refinement algorithm will build a set of integral curves
propagated from the seeding curve, resulting in a skeleton of the
surface. Typically, for each curve the numerical integration algo-
rithm outputs a sequence of points that are used to represent the
integral curve in a piecewise linear fashion. We generate a triangu-
lation from this set of integral curves by grouping them into ribbons
and triangulating each ribbon using a shortest diagonal approach,
see Figure 5 for an example. The ribbons are created by examining
the two diagonals connecting the active points and next points on

S C(i)
C(i+1)S

Figure 5: Adjacent pairs of integral curves form ribbons [12]. Triangu-
lation is performed per-ribbon by a shortest-diagonal heuristic. This
figure shows a sample triangulation between SC(i) and SC(i+1).

both curves and taking the shorter one as the new active edge, si-
multaneously generating a triangle formed by the three points. The
active point is moved to the top point of the triangle and shortest
diagonal is calculated again. The ribbon terminates if the active
edge moves beyond the last point of either integral curve. The pair
of integral curves may not contain the same number of points and
will end at the lesser point list. This algorithm generates a triangle-
based representation of the integral surface approximation of SC,
which can then be directly rendered to achieve a visual represen-
tation of the approximated integral surface. While it is possible to
post-process the generated triangle mesh to reduce its size for faster
rendering, we have not explored this issue as it is outside the scope
of this project.

4 PARALLEL ADAPTIVE STREAM SURFACE ALGORITHM

4.1 Parallel Advecting Algorithms
There are two straightforward approaches to partitioning the com-
putational workload of generating integral curves by advecting par-
ticles through a vector field: parallelization with respect to the par-
ticles, and parallelization with respect to the data. In this section,
we give an overview of our parallelization algorithms, along with
the suitability of each to particular uses cases. Further, Figure 6
illustrates each algorithm for a simple case.

Parallelize-over-Particle (POP) The POP algorithm paral-
lelizes over a set of particles, assigning each message passing in-
terface (MPI) task a fixed number of particles from which integral
curves are then integrated. Data blocks are loaded on demand when
required, i.e. when integral curve integration must be continued in
a block that is not present in memory. Multiple such blocks are
kept in memory in a block cache of size Nblocks, and new blocks are
only loaded when no integral curve can be continued on the cur-
rent set of resident blocks. Since blocks might be used repeatedly
during the integration of integral curves, they are kept in the cache
as long as possible. Data blocks are evicted in least recently used
order to make room for new blocks. This algorithm benefits from
a small amount of communication; the only communication occurs
at initialization and termination.

The initial assignment of particles to tasks is based on spatial
proximity, following the reasoning that the integral curves traced
from spatially proximate seeds are likely to traverse the same re-
gions, and thus blocks, of a data set.

This parallelization strategy tends to balance the work load over
the set of tasks since the particles are uniformly distributed and this
also leads to a nice balance of memory usage between tasks. How-
ever, since I/O is performed as needed, I/O costs can dominate per-
formance based on the nature of the seeding conditions, and the
vector field. This technique can be attractive to stream surfaces
since very dense seeding is required along the seeding curve.
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Figure 6: Parallelization approaches for distributed integral curve in-
tegration. Parallelize-over-Data relies on a fixed assignment of data
blocks to processors and passes integral curves between processor
as they advance into new blocks. Parallelize-over-Particle distributed
integral curves evenly among processors, and data blocks are loaded
on demand when required to integrate an integral curve.

Parallelize-over-Data (POD) The POD approach distributes
data blocks over MPI tasks using a fixed assignment. Integral
curves are then communicated between the tasks to migrate them to
the task owning the block required to continue integration. This al-
gorithm performs minimal I/O: before integration commences, ev-
ery task loads all blocks assigned to it, leveraging maximal parallel
I/O bandwidth.

After each integral curve is advected as far as possible using
the available data blocks, the next block is determined and the in-
tegral curve is sent to the corresponding task; then, further inte-
gral curves are received from other tasks and stored for integra-
tion. Integral curve communication is limited to a small amount
of integration state. Integral curve geometry generated during
the integration remains with the task that generated it, and is re-
assembled into a complete integral curve once computation is com-
plete. The parallelize-over-data algorithm presupposes that the
combined memory over all tasks can accommodate the entire data
set. Aside from this, the algorithm behavior is not dependent on
any further parameters.

This parallelization strategy has the advantage of performing
minimal I/O, which can be a determining factor in algorithm per-
formance. However, the algorithm is subject to work imbalance as
the task that owns a data block is responsible for computing every
integral curve which passes through it. We expect in the case of
stream surfaces, many integral curves will be created very close to-
gether which could cause high load imbalance, depending on the
data layout. This could also lead to memory imbalance between
tasks because each task keeps track of all integral curves segments
created on its data.

4.2 Stream Surface Algorithm

Our stream surface algorithm treats the parallel advecting algorithm
as a “black box,” which is beneficial in that any parallelization strat-
egy can be used to calculate the integral curves. This also is ben-
eficial in the development of new parallel advecting algorithms as
they are easily integrated into the stream surface algorithm. But
this abstraction also has an unknown penalty because of the lack of
coordination between the stream surface and advection algorithm.
There is a tension between these algorithms; the stream surface al-
gorithm wants to compute incrementally and as little as possible,
and the advection algorithms want to parallelize large amounts of
work. Speculative calculation is explored in this paper as a way to
reduce this tension. The speculative calculation is done by increas-
ing the amount of refinement done between the two consecutive in-

SC(i)
C(i+1)S

SC(i)
C(i+1)S

SC(i)
C(i+1)S

SC(i)
C(i+1)SSF = 4SF = 3

SF = 1 SF = 2

Figure 7: The speculative factor SF is used to increase the amount
of refinement done between SC(i) and SC(i+1) integral curves. This
figure shows an example of four different SF values. There is tension
between adaptivity (compute incrementally and as little as possible)
and parallelization (compute in large batches). The SF is designed
to balance these tensions.

tegral curves. Where the normal refinement inserts one new integral
curve, we can insert more than one integral curve per refinement,
and call this speculative factor SF . Figure 7 has examples of four
different speculative factors. Again, the speculative factor will be
used to balance the tension between the amount of work that the
stream surface and parallel advection algorithms want to do.

Mesh C a l c u l a t e S t r e a m S u r f a c e ( C , CP )
{

SC = C a l c u l a t e I n i t i a l S e t O f I n t e g r a l C u r v e s ( C , CP ) ;
SC = D i s t r i b u t e I n t e g r a l C u r v e s ( SC ) ;
whi le ( Sinsert = A d a p t i v e R e f i n e m e n t C h e c k ( SC ) )
{

Srefine = C a l c u l a t e N e w I n t e g r a l C u r v e s ( Sinsert ) ;
SC = D i s t r i b u t e N e w I n t e g r a l C u r v e s ( Srefine ) ;

}
re turn C r e a t e I n t e g r a l C u r v e S u r f a c e M e s h ( SC ) ;

}

Listing 1: Stream Surface Algorithm

We assume the user will provide the piecewise linear seeding
curve C and an initial set of seed points CP. Using these settings
the parallel advection algorithm, POP or POD, will calculate the
initial set of integral curves SC. After the integral curves are gen-
erated, they are evenly distributed across tasks. Each task will con-
tain a subset of the stream surface. The first integral curve will
be duplicated between adjacent tasks to cover the space between
surface segments. This obviates the need for parallel coordination
for refinement checks between adjacent tasks. Dividing the integral
curves evenly between tasks will distribute the memory require-
ment evenly between tasks. Each task will do an adaptive refine-
ment check to determine if the surface quality is good or if more
integral curves are needed to refine the surface to the required reso-
lution. The surface quality is determined by checking the distance
between two consecutive integral curves along the entire length of
the curve. The user will specify a minimum distance Drefine to de-
termine the surface quality. If the requirement is not met the algo-
rithm will refine between the integral curves. Refinement is done
by adding a number of new seed points, specified by the specu-
lative factor, on the seeding curve between the SC(i) and SC(i+1)
integral curves. If the surface has discontinuities, the adaptive re-
finement step will never satisfy the minimum distance Drefine be-
tween integral curves. To stop the adaptive refinement process, we
will stop inserting new seed points if the distance between the SC(i)
and SC(i+1) seed points is less than Ddiscont. After the adaptive re-



finement check we will have a set of seed points that need to be
calculated.

The new seed points are communicated to the processing task –
which task depends on the advection algorithm – and then they are
integrated. The new integral curves must be communicated to each
task that requested the refinement and added to the SC set. This is
needed to check if more surface refinement is needed. This process
is repeated until the adaptive refinement check is satisfied.

After resolution of the surface is adequate, each task generates
triangle strips with the integral curves it contains and renders the
stream surface. The triangle strips are generated between two con-
secutive integral curves using the integral curve segments. The first
integral curve in a task is duplicated between adjacent tasks to cre-
ate the triangle strip needed to connect the surface between tasks.
The rendering is done in parallel because of the large number of
triangles generated. This surface then will allow for the application
of surface shading techniques to complete the visualization.

5 EXPERIMENTS

5.1 Test Cases

We set up tests to cover a wide range of computational workloads,
varying over starting seeding curve size (wide or narrow), integra-
tion time (long or short), and speculative factor (1–6) run for each
of three different data sets. This resulted in 120 different test com-
binations, e.g. “narrow-short-speculative factor=1” test. The data
sets are:

Fusion: This data set is from a simulation of magnetically con-
fined fusion in a tokamak device. To achieve stable plasma equilib-
rium, the field lines of the magnetic field need to travel around the
torus in a helical fashion. Using stream surfaces the scientist can
visualize this magnetic field. The simulation was performed using
the NIMROD code [22]. This data set has the unusual property
that most integral curves are approximately closed and traverse the
torus-shaped vector field domain repeatedly which stresses the data
cache. All tests start with 128 seed points and they integrate for
3 and 6 time units, respectively, for the short and long times. The
short time will complete one rotation of the magnetic field while the
long time will complete two rotations. Figure 1b is an illustrative
rendering of the surface.

Thermal Hydraulics: In this data set, twin inlets pump air into a
box, with a temperature difference between the inlets. The air mixes
in the box and exits through an outlet. Mixing of “hot” and “cold”
air, residence time in the box, and identification of both stagnant
and highly turbulent regions are areas of active study. The simu-
lation was performed using the NEK5000 code [8]. All tests start
with 361 seed points and they integrate for 5 and 10 time units,
respectively, for short and long times. The seed points are placed
around one of the inlets. When advecting, they travel to the top of
the tank and then expand out. Figure 1c is an illustrative rendering
of the top part of the surface.

Ellipsoid: This data set is from an unsteady simulation of the
flow around an ellipsoid, where the angle of the surrounding flow
changes over time. Vortex shedding can be observed on the ellip-
soid boundary. All tests start with 128 seed points and they integrate
for 10 time units for long time. We did not use a short time test be-
cause all of the action in this data set occurs on the other side of the
ellipsoid object. Figure 1a is the surface created from our seeding
curve.

Although our techniques are readily applicable to any mesh type
and decomposition scheme, we wanted to consider large data sets,
so the data sets we study here were resampled to a regular mesh of
512 blocks with 1 million cells per block. We have intentionally
chosen this simplest type of data representation to exclude addi-
tional performance complexities that arise with more complex mesh
types from this study.
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In this work we use the 5th-order Runge-Kutta implementation
given by Dormand and Prince [19]. Further, a small maximum
step size was set to ensure a more uniform triangulation of the sur-
face; this decision increased the integration and surface triangula-
tion time.

5.2 Runtime Environment
All measurements discussed in the following were obtained on the
NERSC Cray XT4 system Franklin. The algorithms discussed
above were implemented in VISIT [1, 6], a visualization system
which is routinely used by application scientists. The parallelize-
over-data and parallelize-over-particles algorithms were already
implemented in recent VisIt releases and were instrumented to pro-
vide the measurements discussed below. Benchmarks were per-
formed during full production use of the system to capture a real-
world scenario. Each benchmark run was performed using 128
cores.

5.3 Measurements
For each process we track the time for I/O, integration, communi-
cation, surface triangulation and busy wait. I/O is the total amount
of time spent reading from disk. POD only reads the data once
where as POP reads data as needed. The integration time should be
the same in each group of tests, i.e. the narrow short tests for each
data set will be the same. Communication time tracks the mes-
sages needed for algorithm coordination and the messages needed
for the stream surface algorithm to distribute new seed points and
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distribute integral curves to create the surface. Surface triangulation
is the time spent to create the triangle strips for the surface. Busy
wait is the time spent by tasks waiting for all other tasks to finish
calculating their integral curves. This time shows the load imbal-
ance of the calculations during the refinement step. We also logged
the number of integral curves added per refinement step.

6 RESULTS

6.1 Stream Surface
Two timings dominate the overall time spent calculating the stream
surface: I/O and busy wait. Communication accounted for a small
amount of time in most of the tests. Only in the Fusion wide long
tests did the communication time account for a noticeable amount
of time. Integration and surface triangulation were a small amount
of the overall time. Figure 11 contains a breakdown of time spent
for each of the tests.

The speculative refinement factor was used to increase the
amount of work done during each refinement cycle. As the spec-
ulative refinement factor increased, the number of refinement cy-
cles needed to complete the surface was reduced. This factor did
halve the number of refinement steps for most tests with a value of
five (see Figure 8). This can be seen in the Fusion wide-long test.
With a speculative refinement factor of one, there were nineteen re-
finement cycles, while with a speculative refinement factor of five,
we only needed eight refinement cycles. Of course, the savings
from reducing the number of refinement steps comes at the expense
of calculating more integral curves. With a speculative refinement
factor of five, the average increase in the number of integral curves
created was 36%. This increased number of integral curves had dif-
ferent effects on the two integral curve algorithms and we consider
them separately in the following sections.

6.2 Parallelize-over-Particles
In most of the POP tests, 40–50% of the time is spent in I/O and
40–50% spent in busy wait. We expected the POP algorithm to be
dominated by I/O, but the amount of time spent in busy wait was
surprising. The implication is that dividing the initial set of integral
curves based on spatial proximity may not be the best assignment
pattern. This grouping caused load imbalance on the tasks which
contained the longest integral curves as they where placed on the
same task. The speculative refinement factor reduced the number
of refinement steps needed, which also reduced the overall busy
wait time. But, at the same time, it increased the busy wait time per
refinement step because the tasks with the longest integral curves
had more integral curves to integrate, causing more load imbalance
between tasks.

We know that POP performance depends on the number of data
blocks that must be loaded to integrate the integral curve. There-
fore, POP’s performance should improve by processing a large
number of integral curves per refinement step to best utilize the
data blocks in the cache. The data cache is the heart of this algo-
rithm; we need it to contain the data needed to keep the particle
integrating, otherwise, time will be spent reading the new data into
memory. But, when the data cache is filled, the POP algorithm re-
moves the least recently used data block when adding a new data
block thinking that the oldest data block is least likely needed again.
This is problematic; when the stream surface algorithm refines the
surface it starts at the seeding curve, meaning the beginning of the
data blocks will not be in the cache. So the cache does not help
between refinement cycles if the previous integral curves that were
created travel though enough blocks to remove some of the begin-
ning data blocks. This case occurred in the Fusion data set. So if
we can reduce the number of refinement steps, the cycling of data
reads could be reduced.

The speculative refinement factor was used to reduce the number
of refinement steps needed to achieve the surface quality, Figure 8
shows the reduction in the number of refinement checks as the spec-
ulative factor increases. This reduced number of refinement steps
also reduced the number of data blocks loaded; see Figure 9 for
the decrease in the number of blocks loaded as the speculative fac-
tor increased. We can see the total number of data blocks loaded
dropped by 40–50% as the speculative factor increases. So, why
don’t we see a decrease in the I/O time as the speculative factor
increases? Even though the number of data blocks loaded is large,
the unique number of data blocks is low, as many of the same data
blocks are reloaded. The operating system and I/O system caching
appears to reduce the amount of time needed to reload these data
blocks. Looking at Figure 11, we see that the time is reduced at
higher levels of speculative refinement, but this reduction comes
less from a small improvement in I/O time as from a reduction in
busy wait time.

6.3 Parallelize-over-Data

Test cases using the POD algorithm highlight the difficulties of
load balancing for stream surface calculations. Because the seeding
curve is typically contained within a small subset of blocks, only a
small subset of tasks will initially be assigned work. This load im-
balance is clearly seen in Figure 12, where only 10 of the 128 tasks
perform any integration at all, and the majority of integration was
done by only two tasks. Additional experiments were performed us-
ing different methods of assigning data to tasks (round robin, strip-
ing), but the load imbalance remained largely unchanged.

Load imbalance using POD is exacerbated by the need to add re-
finement seed points. As these new seed points are added along the
seeding curve, the same initial small set of tasks will be assigned
work, and the rest will remain idle. As the particles are integrated,
and move between blocks, the work load may or may not become
more balanced, depending on the nature of the vector field. The
work imbalance can clearly be seen in the Ellipsoid and Thermal
Hydraulics tests in Figure 11. In these two test cases, the domi-
nant factor is busy wait, caused by load imbalance. However, the
Fusion test case in Figure 11 exhibits generally good load balance,
with less busy wait, and superior performance to the POP algorithm.
This is due to the periodic nature of a vector field within a fusion
simulation where particles will travel through a much larger per-
centage of the total data volume. The initial work imbalance along
the seeding curve can be overcome as particles circulate within the
data volume. Speculative refinement did not prove to be a benefit
for most of the POD test cases. It did reduce the number of refine-
ment steps, but at the expense of concentrating a lot of work on a
small number of tasks.
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7 CONCLUSION AND FUTURE WORK

We performed tests to see which parallel particle algorithm is most
beneficial to the creation of stream surfaces. We found the POD al-
gorithm performed better in four out of ten tests, although all four of
these tests were with the Fusion data set. For the POD algorithm to
really perform well, it needs to have a good distribution of integral
curves across its tasks and this is not likely with a stream surface.
Outside of the Fusion data set, the POP algorithm performed the
best, as it was largely unaffected by the integral curve distribution.
That said, POP could perform better with changes to the integral
curve distributions and data cache retention.

The load imbalance was the biggest factor in all of the tests. Both
algorithms spent a lot of time in busy wait. The speculative refine-
ment only helped the POP algorithm. The extra integral curves that
were created just added to the load imbalance of the POD algo-
rithm. The POP algorithm was able to reduce the number of data
blocks loaded and reduce the busy wait time.

Future work will focus on the weakness of the integral curve al-
gorithms. The POP cache strategy of least recently used seemed
to lose a lot of the data blocks. We believe a better caching strat-
egy could improve performance. The POP algorithm could be im-
proved to have better load balancing by a better distribution of
the seed points to spread the work out more evenly. The POD
could be changed to redistribute the data blocks after the first in-
tegral curve calculation to better distribute the computation load.
Finally, although this study sought to inform parallel stream sur-
face calculation at the extreme ends of the parallelization spectrum
– parallelization over particles or over data – we would like to con-
sider hybrid algorithms, such as the master-slave algorithm [20] and
Nouanesengsy’s predictive scheduling approach.
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